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On the Point of this Book

In which our heroes decide, possibly encouraged by a requirement for
graduation, to set out to explore the world.



102 CHAPTER 1. ON THE POINT OF THIS BOOK

Why You Might Care

Just because some of us can read and write and do a
little math, that doesn’t mean we deserve to conquer
the Universe.

Kurt Vonnegut (1922–2007)
Hocus Pocus (1990)

This book is designed for an undergraduate student who has taken a computer sci-
ence class or three—most likely, you are a sophomore or junior prospective or current
computer science major taking your first non-programming-based CS class. If you
are a student in this position, you may be wondering why you’re taking this class (or
why you have to take this class!). Computer science students taking a class like this one
sometimes don’t see why this material has anything to do with computer science—
particularly if you enjoy CS because you enjoy programming.

I want to be clear: programming is awesome! I get lost in code all the time—let’s
not count the number of hours that I spent writing the code to draw the fractals in
Figure 5.1 in LATEX, for example. (LATEX, the tool used to typeset this book, is the stan-
dard typesetting package for computer scientists, and it’s actually also a full-fledged, if
somewhat bizarre, programming language.)

But there’s more to CS than programming. In fact, many seemingly unrelated prob-
lems rely on the same sorts of abstract thinking. It’s not at all obvious that an optimiz-
ing compiler (a program that translates source code in a programming language like C
into something directly executable by a computer) would have anything important in
common with a program to play chess perfectly. But, in fact, they’re both tasks that are
best understood using logic (Chapter 3) as a central component of any solution. Simi-
larly, filtering spam out of your inbox (“given a message m, should m be categorized as
spam?”) and doing speech recognition (“given an audio stream s of a person speaking
in English, what is the best ‘transcript’ reflecting the words spoken in s?”) are both
best understood using probability (Chapter 10).

And these, of course, are just examples; there are many, many ways in which we
can gain insight and efficiency by thinking more abstractly about the commonalities of
interesting and important CS problems. That is the goal of this book: to introduce the
kind of mathematical, formal thinking that will allow you to understand ideas that are
shared among disparate applications of computer science—and to make it easier for
you to make your own connections, and to extend CS in even more new directions.

How To Use This Book

Read much, but not many Books.

Benjamin Franklin (1706–1790)
Poor Richard’s Almanack (1738)

The brief version of the advice for how to use this book is: it’s your book; use it how-
ever you’d like. (Will Shortz, the puzzle editor of The New York Times, gives the anal-
ogous advice about crossword puzzles when he’s asked whether Googling for an
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answer is cheating.) But my experience is that students do best when they read ac-
tively, with scrap paper close by; most people end up with a deeper understanding of a
problem by trying to solve it themselves first, before they look at the solution.

I’ve assumed throughout that you’re comfortable with programming in at least one
language, including familiarity with recursion. It doesn’t much matter which particu-
lar programming language you know; we’ll use features that are shared by almost all
modern languages—things like conditionals, loops, functions, and recursion. You may
or may not have had more than one programming-based CS course; many, but not all,
institutions require Data Structures as a prerequisite for this material. There are times
in the book when a data structures background may give you a deeper understanding
(but the same is true in reverse if you study data structures after this material). There
are similarly a handful of topics for which rudimentary calculus background is valu-
able. But knowing/remembering calculus will be specifically useful only a handful of
times in this book; the mathematical prerequisite for this material is really algebra and
“mathematical maturity,” which basically means having some degree of comfort with
the idea of a mathematical definition and with the manipulation of a mathematical
expression. (The few places where calculus is helpful are explicitly marked.)

2

3

4

5

6 7 8 9 11

10

data types

logic

proofs

induction

analysis of
algorithms

number
theory

relations counting

probability

graphs/trees

There are 10 chapters after this one in the book.
Their dependencies are as shown at right. Aside from
these dependencies, there are some occasional refer-
ences to other chapters, but these references are light.
If you’ve skipped Chapter 6—many instructors will
choose not cover this material, as it is frequently in-
cluded in a course on Algorithms instead of this one—
then it will still be useful to have an informal sense of
O, Ω, and Θ notation in the context of the worst-case
running time of an algorithm. (You might skim Sec-
tions 6.1 and 6.6 before reading Chapters 7–11.)

I’ve tried to include some helpful tips for problem
solving in the margins throughout the book, along with
a few warnings about common confusions and some
notes on terminology/notation that may be helpful in
keeping the words and symbols straight. There are also two kinds of extensions to the
main material. The “Taking it Further” blocks give more technical details about the
material under discussion—an alternate way of thinking about a definition, or a way
that a concept is used in CS or a related field. You should read the “Taking it Further”
blocks if—but only if!—you find them engaging. Each section also ends with one or
more boxed-off “Computer Science Connections” that show how the core material can
be used to solve a wide variety of (interesting, I hope!) CS applications. No matter how
interesting the core technical material may be, I think that it is what we can do with it
that makes it worth studying.
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What This Book Is About

All truths are easy to understand once they are
discovered; the point is to discover them.

Galileo Galilei (1564–1642)

This book focuses on discrete mathematics, in which the entities of interest are dis-
tinct and separate. Discrete mathematics contrasts with continuous mathematics, as Be careful; there

are two different
words that are pro-
nounced identically:

discrete, adj.: indi-
vidually separate
and distinct.

discreet, adj.: care-
ful and judicious
in speech, espe-
cially to maintain
privacy or avoid
embarrassment.

You wouldn’t read a
book about discreet
mathematics;
instead, someone
who trusts you
might quietly share
it while making
sure no one was
eavesdropping.

in calculus, which addresses infinitesimally small objects, which cannot be separated.
We’ll use summations rather than integrals, and we’ll generally be thinking about
things more like the integers (“1, 2, 3, . . .”) than like the real numbers (“all numbers
between π and 42”). Because this book is mostly focused on non-programming-based
parts of computer science, in general the “output” that you produce when solving a
problem will be something different from a program. Most typically, you will be asked
to answer some question (quantitatively or qualitatively) and to justify that answer—
that is, to prove your answer. (A proof is an ironclad, airtight argument that convinces
its reader of your claim.) Remember that your task in solving a problem is to persuade
your reader that your purported solution genuinely solves the problem. Above all, that
means that your main task in writing is communication and persuasion.

There are three very reasonable ways of thinking about this book.
View #1 is that this book is about the mathematical foundations of computation.

This book is designed to give you a firm foundation in mathematical concepts that are
crucial to computer science: sets and sequences and functions, logic, proofs, probabil-
ity, number theory, graphs, and so forth.

View #2 is that this book is about practice. Essentially no particular example that
we consider matters; what’s crucial is for you to get exposure to and experience with
formal reasoning. Learning specific facts about specific topics is less important than
developing your ability to reason rigorously about formally defined structures.

View #3 is that this book is about applications of computer science: it’s about error-
correcting codes (how to represent data redundantly so that the original information
is recoverable even in the face of data corruption); cryptography (how to communi-
cate securely so that your information is understood by its intended recipient but not
by anyone else); natural language processing (how to interpret the “meaning” of an
English sentence spoken by a human using an automated customer service system);
and so forth. But, because solutions to these problems rely fundamentally on sets and
counting and number theory and logic, we have to understand basic abstract struc-
tures in order to understand the solutions to these applied problems.

In the end, of course, all three views are right: I hope that this book will help to in-
troduce some of the foundational technical concepts and techniques of theoretical
computer science, and I hope that it will also help demonstrate that these theoretical
approaches have relevance and value in work throughout computer science—in topics
both theoretical and applied. And I hope that it will be at least a little bit of fun.

Bon voyage!



2
Basic Data Types

In which our heroes equip themselves for the journey ahead, by taking on
the basic provisions that they will need along the road.
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2.1 Why You Might Care

It is a capital mistake to theorize before one has data.

Sir Arthur Conan Doyle (1859–1930),
A Scandal in Bohemia (1892)

This chapter will introduce concepts, terminology, and notation related to the most
common data types that recur throughout this book, and throughout computer sci-
ence. These basic entities—the Booleans (True and False), numbers (integers, rationals,
and reals), sets, sequences, functions—are also the basic data types we use in modern
programming languages. Essentially every common primitive data type in programs
appears on this list: a Boolean, an integer (or an int), a real number (or a float), and
a string (an ordered sequence of characters). Ordered sequences of other elements are
usually called arrays or lists. If you’ve taken a course on data structures, you’ve proba-
bly worked on several implementations of sets that allow you to insert an element into
an unordered collection and to test whether a particular object is a “member” of the
collection. And functions that map a given input to a corresponding output are the
basic building blocks of programs.

Virtually every interesting computer science application uses these basic data types
extensively. Cryptography, which is devoted to the secure storage and transmission
of information in such a way that a malicious third party cannot decipher that infor-
mation, is typically based directly on integers, particularly large prime numbers. A
ubiquitous task in machine learning is to “cluster” a set of entities into a collection of
nonoverlapping subsets so that two entities in the same subset are similar and two en-
tities in different subsets are dissimilar. In information retrieval, where we might seek
to find the document from a large collection that is most relevant to a given query, it
is common to represent each document by a vector (a sequence of numbers) based on
the words used in the document, and to find the most relevant documents by identify-
ing which ones “point in the same direction” as the query’s vector. And functions are
everywhere in CS, from data structures like hash tables to the routing that’s done for
every packet of information on the internet.

In this chapter, we’ll describe these basic entities and some standard notation that’s
associated with them. Some closely related topics will appear later in the book, as
well. Chapter 7, on number theory, will discuss some subtler properties of the inte-
gers, particularly divisibility and prime numbers. Chapter 8 will discuss relations,
a generalization of functions. But, really, every chapter of this book is related to this
chapter: our whole enterprise will involve building complex objects out of these simple
ones (and, to be ready to understand the more complex objects, we have to understand
the simple pieces first). And before we launch into the sea of applications, we need
to establish some basic shared language. Much of the basic material in this chapter
may be familiar, but regardless of whether you have seen it before, it is important and
standard content with which it is important to be comfortable.



2.2. BOOLEANS, NUMBERS, AND ARITHMETIC 203

2.2 Booleans, Numbers, and Arithmetic

Everything you can imagine is real.

Pablo Picasso (1881–1973)

We start with the most basic types of data: Boolean values (True and False), integers
(. . . ,−2,−1, 0, 1, 2, . . .), rational numbers (fractions with integers as numerators and de-
nominators), and real numbers (including the integers and all the numbers in between
them). The rest of this section will then introduce some basic numerical operations:
absolute values and rounding, exponentiation and logarithms, summations and prod-
ucts. Figure 2.1 summarizes this section’s notation and definitions.

2.2.1 Booleans: True and False

The most basic unit of data is the bit: a single piece of information, which either takes
on the value 0 or the value 1. Every piece of stored data in a digital computer is stored
as a sequence of bits. (See Section 2.4 for a formal definition of sequences.)

We’ll view bits from several different perspectives: 1 and 0, on and off, yes and no,
True and False. Bits viewed under the last of these perspectives have a special name,
the Booleans: Booleans are

named after George
Boole (1815–
1864), a British
mathematician,
who was the first
person to think
about True as 1 and
False as 0.

Definition 2.1 (Booleans)
A Boolean value is either True or False.

The Booleans are the central object of study of Chapter 3, on logic. In fact, they are
in a sense the central object of study of this entire book: simply, we are interested in
making true statements, with a proof to justify why the statement is true.

2.2.2 Numbers: Integers, Reals, and Rationals

We’ll often encounter a few common types of numbers—integers, reals, and rationals:

Definition 2.2 (Integers, Reals, and Rationals)
• The integers, denoted by Z, are those numbers with no fractional part: 0, the positive

integers (1, 2, . . .), and the negative integers (−1,−2,−3, . . .).

• The real numbers, denoted by R, are those numbers that can be (approximately)
represented by decimal numbers; informally, the reals include all integers and all numbers
“between” any two integers.

• The rational numbers, denoted by Q, are those real numbers that can be represented as a
ratio n

m of two integers n and m, where n is called the numerator and m 6= 0 is called the
denominator. A real number that is not rational is called an irrational number.

Here are a few examples of each of these types of numbers:

The superficially
unintuitive notation
for the integers,
the symbol Z, is a
stylized “Z” that
was chosen because
of the German
word Zahlen, which
means “numbers.”
The name rationals
comes from the
word ratio; the
symbol Q comes
from its synonym
quotient. (Besides,
the symbol R was
already taken by
the reals, so the
rationals got stuck
with their second
choice.)
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Booleans True and False
Z integers (. . . ,−3,−2,−1, 0, 1, 2, 3, . . .)
Q rational numbers
R real numbers
[a, b] those real numbers x where a ≤ x ≤ b
(a, b) those real numbers x where a < x < b
[a, b) those real numbers x where a ≤ x < b
(a, b] those real numbers x where a < x ≤ b
|x| absolute value of x: |x| := −x if x < 0; |x| := x if x ≥ 0
⌊x⌋ floor of x: x rounded down to the nearest integer
⌈x⌉ ceiling of x: x rounded up to the nearest integer
bn b multiplied by itself n times
b1/n, or n√b a number y such that yn = b (where y ≥ 0 if possible), if one exists
bm/n (b1/n)m
logb x logarithm: logb x is the value y such that by = x, if one exists
n mod k modulo: n mod k := the remainder when dividing n by k
k | n k (evenly) divides n
∑ summation: ∑n

i=1 xi := x1 + x2 + · · · + xn
∏ product: ∏n

i=1 xi := x1 · x2 · · · · · xn

Figure 2.1: Sum-
mary of the basic
mathematical nota-
tion introduced in
Section 2.2.

Example 2.1 (Integers, reals, and rationals)
The following are all examples of integers: 1, 42, 0, and −17.

All of the following are real numbers: 1, 99.44, the ratio of the circumference
of a circle to its diameter π ≈ 3.141592653 · · · , and the so-called golden ratio
φ = (1 +

√
5)/2 ≈ 1.61803 · · · .

Examples of rational numbers include 3
2 , 9

5 , 16
4 , and 4

1 . (In Chapter 8, we’ll talk
about the familiar notion of the equivalence of two rational numbers like 1

2 and 2
4 ,

or like 16
4 and 4

1 , based on common divisors. See Example 8.36.) Of the example real
numbers above, both 1 and 99.44 are rational numbers; we can write them as 1

1 and
4972
50 , for example. Both π and φ are irrational.

Here are a few useful points relating these three types of numbers:

• All integers are rational numbers (with denominator equal to 1).
• All rational numbers are real numbers.
• But not all rational numbers are integers and not all real numbers are rational: for

example, 3
2 is not an integer, and

√
2 is not rational. (We’ll prove that

√
2 is not

rational in Example 4.21.)

Taking it further: Definition 2.2 specifies Z, Q, and R somewhat informally. To be completely rigor-
ous, one can define the nonnegative integers as the smallest collection of numbers such that: (i) 0 is an
integer; and (ii) if x is an integer, then x + 1 is also an integer. See Section 5.4.1. (Of course, for even this
definition to make sense, we’d need to give a rigorous definition of the number zero and a rigorous def-
inition of the operation of adding one.) With a proper definition of the integers, it’s fairly easy to define
the rationals as ratios of integers. But formally defining the real numbers is surprisingly challenging; it
was a major enterprise of mathematics in the late 1800s, and is often the focus of a first course in analysis
in an undergraduate mathematics curriculum.

Virtually every programming language supports both integers (usually known as ints) and real
numbers (usually known as floats); see p. 217 for some discussion of the way that these basic numerical
types are implemented in real computers. (Rational numbers are much less frequently implemented as
basic data types in programming languages, though there are some exceptions, like Scheme.)
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In addition to the basic symbols that we’ve introduced to represent the integers, the
rationals, and the reals (Z, Q, and R), we will also introduce special notation for some
specific subsets of these numbers. We will write Z≥0 and Z≤0 to denote the nonnega-
tive integers (0, 1, 2, . . .) and nonpositive integers (0,−1,−2, . . .), respectively. Generally,
when we write Z with a superscripted condition, we mean all those integers for which
the stated condition is true. For example, Z 6= 1 denotes all integers aside from 1. Sim-
ilarly, we write R>0 to denote the positive real numbers (every real number x > 0).
Other conditions in the superscript of R are analogous.

0 1 2 3 4 5
(a) The interval (1, 4)

0 1 2 3 4 5
(b) The interval [1, 4]

0 1 2 3 4 5
(c) The interval [1, 4)

0 1 2 3 4 5
(d) The interval (1, 4]

Figure 2.2: Number
lines representing
real numbers
between 1 and 4,
with 1 included in
the range in (b, c),
and 4 included in
the range in (b, d).

We’ll also use standard notation for intervals of real numbers, denoting all real
numbers between two specified values. There are two variants of this notation, which
allow “between two specified values” to either include or exclude those specified val-
ues. We use round parentheses to mean “exclude the endpoint” and square brackets
to mean “include the endpoint” when we denote a range:

• (a, b) denotes those real numbers x for which a < x < b.
• [a, b] denotes those real numbers x for which a ≤ x ≤ b.
• (a, b] denotes those real numbers x for which a < x ≤ b.
• [a, b) denotes those real numbers x for which a ≤ x < b.

Sometimes (a, b) and [a, b] are, respectively, called the open interval and closed inter-
val between a and b. These four types of intervals are also sometimes denoted via
a number line, with open and closed circles denoting open and closed intervals; see
Figure 2.2 for an example. For two real numbers x and y, we will use the standard
notation “x ≈ y” to denote that x is approximately equal to y. This notation is defined
informally, because what counts as “close enough” to be approximately equal will
depend heavily on context.

2.2.3 Absolute Value, Floor, and Ceiling

In the remaining subsections of Section 2.2, we will give definitions of some standard
arithmetic operations that involve the numbers we just defined. We’ll start in this
subsection with three operations on a real number: absolute value, floor, and ceiling.

The absolute value of a real number x, written |x|, denotes how far x is from 0, disre-
garding the sign of x (that is, disregarding whether x is positive or negative):

Definition 2.3 (Absolute Value)
The absolute value of a real number x is |x| :=





x if x ≥ 0
−x otherwise.

For example, |42.42| = 42.42 and | − 128| = 128. (Definition 2.3 uses standard notation
for defining “by cases”: the value of |x| is x when x ≥ 0, and the value of |x| is −x
otherwise—that is, when x < 0.)

For a real number x, we can consider x “rounded down” or “rounded up,” which
are called the floor and ceiling of x, respectively:
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Definition 2.4 (Floor and ceiling)
The floor of a real number x, written ⌊x⌋, denotes the largest integer that is less than or equal
to x. The ceiling of a real number x, written ⌈x⌉, denotes the smallest integer that is greater
than or equal to x.

Note that Definition 2.4 defines the floor and ceiling of negative numbers, too; the
definition doesn’t care whether x is greater than or less than 0.

Here are a few examples of floor and ceiling:

Example 2.2 (Floor and ceiling)
We have ⌊

√
2⌋ = ⌊1.4142 · · ·⌋ = 1, ⌊2π⌋ = ⌊6.28318 · · ·⌋ = 6, and ⌊3⌋ = 3. For ceilings,

we have ⌈
√

2⌉ = 2, ⌈2π⌉ = 7, and ⌈3⌉ = 3.
For negative numbers, ⌊−

√
2⌋ = ⌊−1.4142 · · ·⌋ = −2, and ⌈−

√
2⌉ = −1.

−2 −1 0 1 2 3

Figure 2.3: The floor
and ceiling of −

√
2,√

2, and 3.

The number line may give an intuitive way to think about floor and ceiling: ⌊x⌋ de-
notes the first integer that we encounter moving left in the number line starting at
x; ⌈x⌉ denotes the first integer that we encounter moving right from x. (And x itself
counts for both definitions.) See Figure 2.3.

2.2.4 Exponentiation

We next consider raising a number to an exponent or power.

Definition 2.5 (Raising a number to an integer power)
For a real number b and a nonnegative integer n, the number bn denotes the result of
multiplying b by itself n times:

b0 := 1 and, for n ≥ 1, bn := b · b · · · b| {z }
n times

.

The number b is called the base and the integer n is called the exponent.

For example, 20 = 1, 22 = 2 · 2 = 4, 25 = 2 · 2 · 2 · 2 · 2 = 32, and 52 = 5 · 5 = 25.
Note again that b0 = 1 for any base b, including b = 0. (The case of 00 is tricky: one is

tempted to say both “0 to the anything is 0” and “anything to the 0 is 1.” But, of course,
these two statements are inconsistent. For us, the latter trumps the former, and 00 = 1,
as in Definition 2.5.)

Raising a base to nonintegral exponents
Consider the expression bx for an exponent x > 0 that is not an integer. (It’s all too

easy to have done this calculation by typing numbers into a calculator without actually
thinking about what the expression actually means!) Here’s the definition of bm/n

when the exponent m
n is a rational number:




