

1

David Liben-Nowell

Department of Computer Science

Carleton College

Discrete Mathematics
for Computer Science

or

(A Bit of) The Math that
Computer Scientists
Need to Know

VP AND EDITORIAL DIRECTOR Laurie Rosatone
SENIOR DIRECTOR Don Fowley
ACQUISITIONS EDITOR Linda Ratts
EDITORIAL MANAGER Gladys Soto
CONTENT MANAGEMENT DIRECTOR Lisa Wojcik
CONTENT MANAGER Nichole Urban
SENIOR CONTENT SPECIALIST Nicole Repasky
PRODUCTION EDITOR Rajeshkumar Nallusamy
PHOTO RESEARCHER Billy Ray
COVER PHOTO CREDIT © slobo/Getty Images, Inc.

This book was set in TeXGyrePagella 10/12 by SPi Global and printed and bound by Strategic Content Imaging.

This book is printed on acid free paper. ∞

Founded in 1807, John Wiley & Sons, Inc. has been a valued source of knowledge and understanding for more
than 200 years, helping people around the world meet their needs and fulfill their aspirations. Our company is
built on a foundation of principles that include responsibility to the communities we serve and where we live
and work. In 2008, we launched a Corporate Citizenship Initiative, a global effort to address the environmental,
social, economic, and ethical challenges we face in our business. Among the issues we are addressing are carbon
impact, paper specifications and procurement, ethical conduct within our business and among our vendors,
and community and charitable support. For more information, please visit our website: www.wiley.com/go/
citizenship.

Copyright © 2018, John Wiley & Sons, Inc. All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying,
recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States
Copyright Act, without either the prior written permission of the Publisher, or authorization through payment
of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA
01923 (Web site: www.copyright.com). Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030-5774, (201) 748-6011,
fax (201) 748-6008, or online at: www.wiley.com/go/permissions.

Evaluation copies are provided to qualified academics and professionals for review purposes only, for use
in their courses during the next academic year. These copies are licensed and may not be sold or transferred
to a third party. Upon completion of the review period, please return the evaluation copy to Wiley. Return
instructions and a free of charge return shipping label are available at: www.wiley.com/go/returnlabel. If you
have chosen to adopt this textbook for use in your course, please accept this book as your complimentary desk
copy. Outside of the United States, please contact your local sales representative.

ISBN: 978-1-118-06553-2 (PBK)
ISBN: 978-1-119-07073-3 (EVALC)

Library of Congress Cataloging in Publication Data:

Liben-Nowell, David, author.
Title: Discrete mathematics for computer science / by David Liben-Nowell.
Description: Hoboken, NJ : John Wiley & Sons, 2017. | Includes index. |
 Identifiers: LCCN 2017025007 (print) | LCCN 2017035974 (ebook) | ISBN
 9781119397199 (pdf) | ISBN 9781119397113 (epub) | ISBN 9781118065532 (pbk.)
Subjects: LCSH: Computer science—Mathematics.
Classification: LCC QA76.9.M35 (ebook) | LCC QA76.9.M35 L53 2017 (print) |
 DDC 004.01/51—dc23
LC record available at https://lccn.loc.gov/2017025007

The inside back cover will contain printing identification and country of origin if omitted from this page. In
addition, if the ISBN on the back cover differs from the ISBN on this page, the one on the back cover is correct.

To MDSWM, with never-ending appreciation, and

in loving memory of my grandfather, Jay Liben, who

brought more joy, curiosity, and kvetching to this

world than anyone else I know.

Contents

1 On the Point of this Book 101

2 Basic Data Types 201
2.1 Why You Might Care 202
2.2 Booleans, Numbers, and Arithmetic 203
2.3 Sets: Unordered Collections 222
2.4 Sequences, Vectors, and Matrices: Ordered Collections 237
2.5 Functions 253
2.6 Chapter at a Glance 270

3 Logic 301
3.1 Why You Might Care 302
3.2 An Introduction to Propositional Logic 303
3.3 Propositional Logic: Some Extensions 317
3.4 An Introduction to Predicate Logic 331
3.5 Predicate Logic: Nested Quantifiers 349
3.6 Chapter at a Glance 362

6

4 Proofs 401
4.1 Why You Might Care 402
4.2 Error-Correcting Codes 403
4.3 Proofs and Proof Techniques 423
4.4 Some Examples of Proofs 441
4.5 Common Errors in Proofs 458
4.6 Chapter at a Glance 469

5 Mathematical Induction 501
5.1 Why You Might Care 502
5.2 Proofs by Mathematical Induction 503
5.3 Strong Induction 521
5.4 Recursively Defined Structures and Structural Induction 533
5.5 Chapter at a Glance 546

6 Analysis of Algorithms 601
6.1 Why You Might Care 602
6.2 Asymptotics 603
6.3 Asymptotic Analysis of Algorithms 617
6.4 Recurrence Relations: Analyzing Recursive Algorithms 631
6.5 Recurrence Relations: The Master Method 647
6.6 Chapter at a Glance 657

7 Number Theory 701
7.1 Why You Might Care 702
7.2 Modular Arithmetic 703
7.3 Primality and Relative Primality 717
7.4 Multiplicative Inverses 734
7.5 Cryptography 745
7.6 Chapter at a Glance 756

7

8 Relations 801
8.1 Why You Might Care 802
8.2 Formal Introduction 803
8.3 Properties of Relations: Reflexivity, Symmetry, and Transitivity 818
8.4 Special Relations: Equivalence Relations and Partial/Total Orders 833
8.5 Chapter at a Glance 850

9 Counting 901
9.1 Why You Might Care 902
9.2 Counting Unions and Sequences 903
9.3 Using Functions to Count 926
9.4 Combinations and Permutations 944
9.5 Chapter at a Glance 965

10 Probability 1001
10.1 Why You Might Care 1002
10.2 Probability, Outcomes, and Events 1005
10.3 Independence and Conditional Probability 1021
10.4 Random Variables and Expectation 1041
10.5 Chapter at a Glance 1067

11 Graphs and Trees 1101
11.1 Why You Might Care 1102
11.2 Formal Introduction 1103
11.3 Paths, Connectivity, and Distances 1129
11.4 Trees 1147
11.5 Weighted Graphs 1164
11.6 Chapter at a Glance 1177

12 Index 1201

List of Computer Science Connections

Chapter 2: Basic Data Types
Integers and ints, Reals and floats 217
Computing Square Roots, and Not Computing Square Roots 218
Set Building in Languages 233
Clustering 234
The Vector Space Model 248
Rotation Matrices 249
Hash Tables and Hash Functions 267

Chapter 3: Logic
Natural Language Processing, Ambiguity, and Truth 314
Computational Complexity, Satisfiability, and $1,000,000 326
Short-Circuit Evaluation, Optimization, and Modern Compilers 327
Game Trees, Logic, and Winning Tic-Tac(-Toe) 344
Nonlocal Variables and Lexical vs. Dynamic Scoping 345
Gödel’s Incompleteness Theorem 346
Currying 357

10

Chapter 4: Proofs
Reed–Solomon Codes 418

Are Massive Computer-Generated Proofs Proofs? 437

Paul Erdős, “The Book,” and Erdős Numbers 438

Cryptography and the Generation of Prime Numbers 454

Other Uncomputable Problems (That You Might Care About) 455

The Cost of Missing Proofs: Some Famous Bugs in CS 464

Chapter 5: Mathematical Induction
Loop Invariants 517

Triangulation, Computer Graphics, and 3D Surfaces 528

Max Heaps 529

Grammars, Parsing, and Ambiguity 543

Chapter 6: Analysis of Algorithms
Moore’s Law 613

Multitasking, Garbage Collection, and Wall Clocks 627

Time, Space, and Complexity 628

AVL Trees 643

Divide-and-Conquer Algorithms and Matrix Multiplication 655

Chapter 7: Number Theory
Converting Between Bases, Binary Representation, and Generating Strings 714

Secret Sharing 730

Error Correction with Reed–Solomon Codes 731

Miller–Rabin Primality Test 742

Diffie–Hellman Key Exchange 753

11

Chapter 8: Relations
Relational Databases 815
Regular Expressions 830
Deterministic Finite Automata (DFAs) 846
The Painter’s Algorithm and Hidden-Surface Removal 847

Chapter 9: Counting
Running out of IP addresses, and IPv6 919
A Lower Bound for Comparison-Based Sorting 920
Infinite Cardinalities (and Problems that Can’t Be Solved by Any Program) 937
Lossy and Lossless Compression 938
Brute Force Algorithms and Dynamic Programming 959
The Enigma Machine and the First Computer 960

Chapter 10: Probability
Quantum Computing 1016
Information, Charles Dickens, and the Entropy of English 1017
Speech Recognition, Bayes’ Rule, and Language Models 1036
Bayesian Modeling and Spam Filtering 1037
A Randomized Algorithm for Finding Medians 1060
The Monte Carlo Method 1062

Chapter 11: Graphs and Trees
Degree Distributions and the Heavy Tail 1123
Graph Drawing, Graph Layouts, and the 9/11 Memorial 1124
The Bowtie Structure of the Web 1142
Garbage Collection 1143
Directed Graphs, Cycles, and Kidney Transplants 1159
Binary Search Trees 1160
Random Walks and Ranking Web Pages 1174

Acknowledgements

Would thou hadst less deserved,
That the proportion both of thanks and payment
Might have been mine! only I have left to say,
More is thy due than more than all can pay.

William Shakespeare (1564–1616)
The Scottish Play

To everyone who has helped, directly and indirectly, with everything over these last
years—these words cannot adequately convey my thanks, but at least they’re a start:
thank you!

I owe special thanks to a very long list of generous and warm people—many more
than I can mention here—for advice and kindness and support, both technical and
emotional, as this book came into being. For those whom I haven’t named by name,
please know that it’s only because I have gotten such great support from so many
people, and I hope that you’ll consider this sentence the promise that, when we next
see each other, the first round’s on me. While I’m leaving out the names of the many
people who have helped make my life happy and fulfilling while I’ve been working on
this book, I do want to give specific thanks to a few people:

I want to thank my colleagues—near and far, including many who are not just col-
leagues but also dear friends and beloved family members—for their wisdom and pa-
tience, for answering my endlessly annoying questions, and for conversations that led
to examples or exercises or bug fixes or the very existence of this entire book (even if
you didn’t know that’s what we were talking about at the time): Eric Alexander, Tanya
Berger-Wolf, Kelly Connole, Amy Csizmar Dalal, Josh Davis, Roger Downs, Laura
Effinger-Dean, Eric Egge, Adriana Estill, Andy Exley, Alex Freeman, Sherri Goings,
Jack Goldfeather, Deanna Haunsperger, Pierre Hecker, David Huyck, Sue Jandro,
Sarah Jansen, Iris Jastram, Jon Kleinberg, Carissa Knipe, Mark Krusemeyer, Jessica
Leiman, Lynn Liben, Jadrian Miles, Dave Musicant, Gail Nelson, Rich Nowell, Layla
Oesper, Jeff Ondich, Sam Patterson, Anna Rafferty, Alexa Sharp, Julia Strand, Mike Tie,
Zach Weinersmith, Tom Wexler, Kevin Woods, Jed Yang, and Steve Zdancewic.

I also owe my appreciation to Don Fowley, Bryan Gambrel, Beth Golub, Jessy Moor,
Anna Pham, Sondra Scott, and Gladys Soto at Wiley. Thanks to Judy Brody for relent-
less and efficient pursuit of permissions (from many different people and publishers)

14

to use the quotes that appear as epigraphs throughout the book. And thanks as well to
the many insightful reviewers of previous drafts of this material. So many times I got
chapter reviews back and put them aside in a huff, only to come back to the reviewers’
comments months later and realize that their suggestions were exactly right. (And, to
be clear: blame me, not them, for the errors that I’m sure remain.)

I specifically want to thank Eric Alexander, Laura Biester, Josh Davis, Charlotte
Foran, Jadrian Miles, Dave Musicant, Layla Oesper, Anna Rafferty, Jed Yang, and the
Carleton CS 202 students from 2013–2017 for their willingness to work with early,
and buggy, drafts of this book. And thanks to those and many other students at
Carleton for their patience, and for sending their comments and suggestions for
improvements—in particular: Hami Abdi, David Abel, Alexander Auyeung, Andrew
Bacon, Kharmen Bharucha, John Blake, Caleb Braun, Macallan Brown, Adam Canady,
Noah Carnahan, Yitong Chen, Jinny Cho, Leah Cole, Katja Collier, Lila Conlee, Eric
Ewing, Greg Fournier, Andy Freeland, Emma Freeman, Samuel Greaves, Reilly Hallstrom,
Jacob Hamalian, Sylvie Hauser, Jack Hessel, Joy Hill, Matt Javaly, Emily Johnston,
Emily Kampa, Carlton Keedy, Henry Keiter, Jonathan Knudson, Julia Kroll, Brennan
Kuo, Edward Kwiatkowski, Dimitri Lang, Tristan Leigh, Zach Levonian, Daniel Levy,
Rhys Lindmark, Gordon Loery, David Long, Robert Lord, Inara Makhmudova, Elliot
Mawby, Javier Moran Lemus, Sean Mullan, Micah Nacht, Justin Norden, Laurel Orr,
Raven Pillmann, Josh Pitkofsky, Matthew Pruyne, Nikki Rhodes, Will Schifeling,
Colby Seyferth, Alex Simonides, Oscar Smith, Kyung Song, Frederik Stensaeth, Patrick
Stephen, Maximiliano Villarreal, Alex Voorhees, Allie Warren, Ben Wedin, Michael
Wheatman, Jack Wines, Christopher Winter, and Andrew Yang.

This book would not have been possible without the support of Carleton College,
not only for the direct support of this project, but also for providing a wonderfully
engaging place to make my professional home. When I started at Carleton, my friends
and family back east thought that moving to Minnesota (the frontier!) was nothing less
than a sign that I had finally lost it, and I have to admit that I thought they had a point.
But it’s been a fabulous place to have landed, with great friends and colleagues and
students—the kind who don’t let you get away with anything, but in a good way.

Some of the late stages of the work on this book occurred while I was visiting the
University of Cambridge. Thanks to Churchill College and the Computer Laboratory,
and especially to Melissa Hines and Cecilia Mascolo, for their hospitality and support.

And my thanks to the somewhat less formal host institutions that have fueled this
writing: Brick Oven Bakery, Cakewalk, Goodbye Blue Monday, Tandem Bagels, The
Hideaway (Northfield, MN); Anodyne, Blue Moon, Bull Run, Caffetto, Common Roots,
Espresso Royale, Isles Bun & Coffee, Keen Eye, Plan B, Precision Grind, Reverie, Spy-
house, Sebastian Joe’s, The Beat, The Nicollet, The Purple Onion, Turtle Bread Com-
pany, Uncommon Grounds, Urban Bean (Minneapolis, MN); Ginkgo, Grand Cen-
tral, Kopplin’s (St. Paul, MN); Collegetown Bagels (Ithaca, NY); Slave to the Grind
(Bronxville, NY); Bloc Eleven, Diesel Cafe (Somerville, MA); Lyndell’s (Cambridge,
MA); Tryst (Washington, DC); Hot Numbers, Espresso Library (Cambridge, England);
and various Starbucks, Caribous, and Dunn Brothers.

15

And, last but certainly not least, my deepest gratitude to my friends and family for
all your help and support while this project has consumed both hours and years. You
know who you are, and I hope you also know how much I appreciate you. Thank you!

David Liben-Nowell
Northfield, MN
May 2017

PS: I would be delighted to receive any comments or suggestions from readers. Please
don’t hesitate to get in touch.

Credits

This book was typeset using LATEX, and I produced all but a few figures from scratch
using a combination of PSTricks and TikZ. The other figures are reprinted with per-
mission from their copyright holders. The illustrations that open every chapter were
drawn by Carissa Knipe (http://carissaknipe.com), who was a complete delight to
work with—both on these illustrations and when she was a student at Carleton. I took
the photograph of a house in Figure 2.48 myself. Figure 4.5 (the Therac-25 diagram)
is reproduced from Nancy Leveson’s book Safeware: System Safety and Computers with
permission from Pearson Education. Figure 4.27 (a poem proving the undecidability
of the Halting Problem) is reproduced with permission from Geoffrey K. Pullum. Fig-
ure 5.22 (triangulations of a rabbit) is reproduced from a paper by Tobias Isenberg,
Knut Hartmann, and Henry König with permission from the Society for Modeling and
Simulation International (SCS). Figure 11.15 (a map of some European train routes) is
reproduced with permission from RGBAlpha/Getty Images.1 1 Nancy Leveson.

Safeware: System
Safety and Com-
puters. Pearson
Education, Inc.,
New York, 1995; To-
bias Isenberg, Knut
Hartmann, and
Henry König. In-
terest value driven
adaptive subdivi-
sion. In Simulation
and Visualisation
(SimVis), pages
139–149. SCS Eu-
ropean Publishing
House, 2003; and
Geoffrey K. Pullum.
Scooping the loop
snooper: A proof
that the halting
problem is undecid-
able. Mathematics
Magazine, 73(4):319–
320, 2000. Used
by permission of
Geoffrey K. Pullum.

For their kind permission to use quotes that appear as epigraphs in sections through-
out the book, thanks to:

Kurt Vonnegut, p. 102. Excerpt from Hocus Pocus by Kurt Vonnegut, copyright ©1990
by Kurt Vonnegut. Used by permission of G. P. Putnam’s Sons, an imprint of Pen-
guin Publishing Group, a division of Penguin Random House LLC. All rights re-
served. Any third party use of this material, outside of this publication, is prohib-
ited. Interested parties must apply directly to Penguin Random House LLC for
permission.

Pablo Picasso, p. 203. ©2017 Estate of Pablo Picasso / Artists Rights Society (ARS), New
York. Reprinted with permission.

Laurence J. Peter, p. 317. Reprinted with permission of the estate of Laurence J. Peter.

Carl Sagan, p. 331. From Broca’s Brain: Reflections on the Romance of Science, ©1979 Carl
Sagan. Reprinted with permission from Democritus Properties, LLC.

Peter De Vries, p. 349. Copyright ©1967 by Peter De Vries. Reprinted by permission of
Curtis Brown, Ltd. All rights reserved.

18

Edna St. Vincent Millay, p. 521. Edna St. Vincent Millay, excerpt from a letter to Arthur
Davidson Ficke (October 24, 1930) from Letters of Edna St. Vincent Millay, edited by
Allan Ross Macdougall, ©1952 by Norma Millay Ellis. Reprinted with the permis-
sion of The Permissions Company, Inc., on behalf of Holly Peppe, Literary Executor,
The Millay Society, www.millay.org.

George C. Marshall, p. 533. Reprinted with permission of the George C. Marshall Foun-
dation.

Peter Drucker, p. 602. Reprinted with permission of the Drucker 1996 Literary Works
Trust.

Bob Dylan, p. 603. Lyrics from Bob Dylan’s “Don’t Think Twice, It’s All Right” (1963).
Copyright ©1963 by Warner Bros. Inc.; renewed 1991 by Special Rider Music. All
rights reserved. International copyright secured. Reprinted by permission.

Mario Andretti, p. 617. Printed with permission of Sports Management Network, Inc.

E. B. White, p. 631. E. B. White / The New Yorker; ©Conde Nast. The quote originally
appeared in the Notes and Comment section of the July 3, 1943 issue of The New
Yorker, “The 40s: The Story of a Decade.” Reprinted with permission.

Charles de Gaulle, p. 647. © Editions Plon. Reprinted with permission.

W. H. Auden, p. 703. “Notes on the Comic” from The Dyer’s Hand and Other Essays by
W. H. Auden, copyright ©1948, 1950, 1952, 1953, 1954, 1956, 1957, 1958, 1960, 1962
by W. H. Auden. Used by permission of Random House, an imprint and division
of Penguin Random House LLC. All rights reserved. Any third party use of this
material, outside of this publication, is prohibited. Interested parties must apply
directly to Penguin Random House LLC for permission.

Bill Watterson, p. 833. Quote from a Calvin & Hobbes cartoon; reprinted with permis-
sion from Universal Uclick.

Tom Lehrer, p. 926. Lyrics from “Poisoning Pigeons In The Park” reprinted with per-
mission from Maelstrom Music/Tom Lehrer.

Dick Cavett, p. 1021. Reprinted with permission from Dick Cavett.

Tom Stoppard, p. 1108. Excerpts from Rosencrantz and Guildenstern Are Dead, copyright
© 1967 by Tom Stoppard. Used by permission of Grove/Atlantic, Inc. Any third
party use of this material, outside of this publication, is prohibited.

Marshall Dodge and Robert Bryan, p. 1129. From “Which Way to Millinocket?,” Bert and I
(1958). Reprinted with permission from Islandport Press, Inc.

1
On the Point of this Book

In which our heroes decide, possibly encouraged by a requirement for
graduation, to set out to explore the world.

102 CHAPTER 1. ON THE POINT OF THIS BOOK

Why You Might Care

Just because some of us can read and write and do a
little math, that doesn’t mean we deserve to conquer
the Universe.

Kurt Vonnegut (1922–2007)
Hocus Pocus (1990)

This book is designed for an undergraduate student who has taken a computer sci-
ence class or three—most likely, you are a sophomore or junior prospective or current
computer science major taking your first non-programming-based CS class. If you
are a student in this position, you may be wondering why you’re taking this class (or
why you have to take this class!). Computer science students taking a class like this one
sometimes don’t see why this material has anything to do with computer science—
particularly if you enjoy CS because you enjoy programming.

I want to be clear: programming is awesome! I get lost in code all the time—let’s
not count the number of hours that I spent writing the code to draw the fractals in
Figure 5.1 in LATEX, for example. (LATEX, the tool used to typeset this book, is the stan-
dard typesetting package for computer scientists, and it’s actually also a full-fledged, if
somewhat bizarre, programming language.)

But there’s more to CS than programming. In fact, many seemingly unrelated prob-
lems rely on the same sorts of abstract thinking. It’s not at all obvious that an optimiz-
ing compiler (a program that translates source code in a programming language like C
into something directly executable by a computer) would have anything important in
common with a program to play chess perfectly. But, in fact, they’re both tasks that are
best understood using logic (Chapter 3) as a central component of any solution. Simi-
larly, filtering spam out of your inbox (“given a message m, should m be categorized as
spam?”) and doing speech recognition (“given an audio stream s of a person speaking
in English, what is the best ‘transcript’ reflecting the words spoken in s?”) are both
best understood using probability (Chapter 10).

And these, of course, are just examples; there are many, many ways in which we
can gain insight and efficiency by thinking more abstractly about the commonalities of
interesting and important CS problems. That is the goal of this book: to introduce the
kind of mathematical, formal thinking that will allow you to understand ideas that are
shared among disparate applications of computer science—and to make it easier for
you to make your own connections, and to extend CS in even more new directions.

How To Use This Book

Read much, but not many Books.

Benjamin Franklin (1706–1790)
Poor Richard’s Almanack (1738)

The brief version of the advice for how to use this book is: it’s your book; use it how-
ever you’d like. (Will Shortz, the puzzle editor of The New York Times, gives the anal-
ogous advice about crossword puzzles when he’s asked whether Googling for an

103

answer is cheating.) But my experience is that students do best when they read ac-
tively, with scrap paper close by; most people end up with a deeper understanding of a
problem by trying to solve it themselves first, before they look at the solution.

I’ve assumed throughout that you’re comfortable with programming in at least one
language, including familiarity with recursion. It doesn’t much matter which particu-
lar programming language you know; we’ll use features that are shared by almost all
modern languages—things like conditionals, loops, functions, and recursion. You may
or may not have had more than one programming-based CS course; many, but not all,
institutions require Data Structures as a prerequisite for this material. There are times
in the book when a data structures background may give you a deeper understanding
(but the same is true in reverse if you study data structures after this material). There
are similarly a handful of topics for which rudimentary calculus background is valu-
able. But knowing/remembering calculus will be specifically useful only a handful of
times in this book; the mathematical prerequisite for this material is really algebra and
“mathematical maturity,” which basically means having some degree of comfort with
the idea of a mathematical definition and with the manipulation of a mathematical
expression. (The few places where calculus is helpful are explicitly marked.)

2

3

4

5

6 7 8 9 11

10

data types

logic

proofs

induction

analysis of
algorithms

number
theory

relations counting

probability

graphs/trees

There are 10 chapters after this one in the book.
Their dependencies are as shown at right. Aside from
these dependencies, there are some occasional refer-
ences to other chapters, but these references are light.
If you’ve skipped Chapter 6—many instructors will
choose not cover this material, as it is frequently in-
cluded in a course on Algorithms instead of this one—
then it will still be useful to have an informal sense of
O, Ω, and Θ notation in the context of the worst-case
running time of an algorithm. (You might skim Sec-
tions 6.1 and 6.6 before reading Chapters 7–11.)

I’ve tried to include some helpful tips for problem
solving in the margins throughout the book, along with
a few warnings about common confusions and some
notes on terminology/notation that may be helpful in
keeping the words and symbols straight. There are also two kinds of extensions to the
main material. The “Taking it Further” blocks give more technical details about the
material under discussion—an alternate way of thinking about a definition, or a way
that a concept is used in CS or a related field. You should read the “Taking it Further”
blocks if—but only if!—you find them engaging. Each section also ends with one or
more boxed-off “Computer Science Connections” that show how the core material can
be used to solve a wide variety of (interesting, I hope!) CS applications. No matter how
interesting the core technical material may be, I think that it is what we can do with it
that makes it worth studying.

104 CHAPTER 1. ON THE POINT OF THIS BOOK

What This Book Is About

All truths are easy to understand once they are
discovered; the point is to discover them.

Galileo Galilei (1564–1642)

This book focuses on discrete mathematics, in which the entities of interest are dis-
tinct and separate. Discrete mathematics contrasts with continuous mathematics, as Be careful; there

are two different
words that are pro-
nounced identically:

discrete, adj.: indi-
vidually separate
and distinct.

discreet, adj.: care-
ful and judicious
in speech, espe-
cially to maintain
privacy or avoid
embarrassment.

You wouldn’t read a
book about discreet
mathematics;
instead, someone
who trusts you
might quietly share
it while making
sure no one was
eavesdropping.

in calculus, which addresses infinitesimally small objects, which cannot be separated.
We’ll use summations rather than integrals, and we’ll generally be thinking about
things more like the integers (“1, 2, 3, . . .”) than like the real numbers (“all numbers
between π and 42”). Because this book is mostly focused on non-programming-based
parts of computer science, in general the “output” that you produce when solving a
problem will be something different from a program. Most typically, you will be asked
to answer some question (quantitatively or qualitatively) and to justify that answer—
that is, to prove your answer. (A proof is an ironclad, airtight argument that convinces
its reader of your claim.) Remember that your task in solving a problem is to persuade
your reader that your purported solution genuinely solves the problem. Above all, that
means that your main task in writing is communication and persuasion.

There are three very reasonable ways of thinking about this book.
View #1 is that this book is about the mathematical foundations of computation.

This book is designed to give you a firm foundation in mathematical concepts that are
crucial to computer science: sets and sequences and functions, logic, proofs, probabil-
ity, number theory, graphs, and so forth.

View #2 is that this book is about practice. Essentially no particular example that
we consider matters; what’s crucial is for you to get exposure to and experience with
formal reasoning. Learning specific facts about specific topics is less important than
developing your ability to reason rigorously about formally defined structures.

View #3 is that this book is about applications of computer science: it’s about error-
correcting codes (how to represent data redundantly so that the original information
is recoverable even in the face of data corruption); cryptography (how to communi-
cate securely so that your information is understood by its intended recipient but not
by anyone else); natural language processing (how to interpret the “meaning” of an
English sentence spoken by a human using an automated customer service system);
and so forth. But, because solutions to these problems rely fundamentally on sets and
counting and number theory and logic, we have to understand basic abstract struc-
tures in order to understand the solutions to these applied problems.

In the end, of course, all three views are right: I hope that this book will help to in-
troduce some of the foundational technical concepts and techniques of theoretical
computer science, and I hope that it will also help demonstrate that these theoretical
approaches have relevance and value in work throughout computer science—in topics
both theoretical and applied. And I hope that it will be at least a little bit of fun.

Bon voyage!

2
Basic Data Types

In which our heroes equip themselves for the journey ahead, by taking on
the basic provisions that they will need along the road.

202 CHAPTER 2. BASIC DATA TYPES

2.1 Why You Might Care

It is a capital mistake to theorize before one has data.

Sir Arthur Conan Doyle (1859–1930),
A Scandal in Bohemia (1892)

This chapter will introduce concepts, terminology, and notation related to the most
common data types that recur throughout this book, and throughout computer sci-
ence. These basic entities—the Booleans (True and False), numbers (integers, rationals,
and reals), sets, sequences, functions—are also the basic data types we use in modern
programming languages. Essentially every common primitive data type in programs
appears on this list: a Boolean, an integer (or an int), a real number (or a float), and
a string (an ordered sequence of characters). Ordered sequences of other elements are
usually called arrays or lists. If you’ve taken a course on data structures, you’ve proba-
bly worked on several implementations of sets that allow you to insert an element into
an unordered collection and to test whether a particular object is a “member” of the
collection. And functions that map a given input to a corresponding output are the
basic building blocks of programs.

Virtually every interesting computer science application uses these basic data types
extensively. Cryptography, which is devoted to the secure storage and transmission
of information in such a way that a malicious third party cannot decipher that infor-
mation, is typically based directly on integers, particularly large prime numbers. A
ubiquitous task in machine learning is to “cluster” a set of entities into a collection of
nonoverlapping subsets so that two entities in the same subset are similar and two en-
tities in different subsets are dissimilar. In information retrieval, where we might seek
to find the document from a large collection that is most relevant to a given query, it
is common to represent each document by a vector (a sequence of numbers) based on
the words used in the document, and to find the most relevant documents by identify-
ing which ones “point in the same direction” as the query’s vector. And functions are
everywhere in CS, from data structures like hash tables to the routing that’s done for
every packet of information on the internet.

In this chapter, we’ll describe these basic entities and some standard notation that’s
associated with them. Some closely related topics will appear later in the book, as
well. Chapter 7, on number theory, will discuss some subtler properties of the inte-
gers, particularly divisibility and prime numbers. Chapter 8 will discuss relations,
a generalization of functions. But, really, every chapter of this book is related to this
chapter: our whole enterprise will involve building complex objects out of these simple
ones (and, to be ready to understand the more complex objects, we have to understand
the simple pieces first). And before we launch into the sea of applications, we need
to establish some basic shared language. Much of the basic material in this chapter
may be familiar, but regardless of whether you have seen it before, it is important and
standard content with which it is important to be comfortable.

2.2. BOOLEANS, NUMBERS, AND ARITHMETIC 203

2.2 Booleans, Numbers, and Arithmetic

Everything you can imagine is real.

Pablo Picasso (1881–1973)

We start with the most basic types of data: Boolean values (True and False), integers
(. . . ,−2,−1, 0, 1, 2, . . .), rational numbers (fractions with integers as numerators and de-
nominators), and real numbers (including the integers and all the numbers in between
them). The rest of this section will then introduce some basic numerical operations:
absolute values and rounding, exponentiation and logarithms, summations and prod-
ucts. Figure 2.1 summarizes this section’s notation and definitions.

2.2.1 Booleans: True and False

The most basic unit of data is the bit: a single piece of information, which either takes
on the value 0 or the value 1. Every piece of stored data in a digital computer is stored
as a sequence of bits. (See Section 2.4 for a formal definition of sequences.)

We’ll view bits from several different perspectives: 1 and 0, on and off, yes and no,
True and False. Bits viewed under the last of these perspectives have a special name,
the Booleans: Booleans are

named after George
Boole (1815–
1864), a British
mathematician,
who was the first
person to think
about True as 1 and
False as 0.

Definition 2.1 (Booleans)
A Boolean value is either True or False.

The Booleans are the central object of study of Chapter 3, on logic. In fact, they are
in a sense the central object of study of this entire book: simply, we are interested in
making true statements, with a proof to justify why the statement is true.

2.2.2 Numbers: Integers, Reals, and Rationals

We’ll often encounter a few common types of numbers—integers, reals, and rationals:

Definition 2.2 (Integers, Reals, and Rationals)
• The integers, denoted by Z, are those numbers with no fractional part: 0, the positive

integers (1, 2, . . .), and the negative integers (−1,−2,−3, . . .).

• The real numbers, denoted by R, are those numbers that can be (approximately)
represented by decimal numbers; informally, the reals include all integers and all numbers
“between” any two integers.

• The rational numbers, denoted by Q, are those real numbers that can be represented as a
ratio n

m of two integers n and m, where n is called the numerator and m 6= 0 is called the
denominator. A real number that is not rational is called an irrational number.

Here are a few examples of each of these types of numbers:

The superficially
unintuitive notation
for the integers,
the symbol Z, is a
stylized “Z” that
was chosen because
of the German
word Zahlen, which
means “numbers.”
The name rationals
comes from the
word ratio; the
symbol Q comes
from its synonym
quotient. (Besides,
the symbol R was
already taken by
the reals, so the
rationals got stuck
with their second
choice.)

204 CHAPTER 2. BASIC DATA TYPES

Booleans True and False
Z integers (. . . ,−3,−2,−1, 0, 1, 2, 3, . . .)
Q rational numbers
R real numbers
[a, b] those real numbers x where a ≤ x ≤ b
(a, b) those real numbers x where a < x < b
[a, b) those real numbers x where a ≤ x < b
(a, b] those real numbers x where a < x ≤ b
|x| absolute value of x: |x| := −x if x < 0; |x| := x if x ≥ 0
⌊x⌋ floor of x: x rounded down to the nearest integer
⌈x⌉ ceiling of x: x rounded up to the nearest integer
bn b multiplied by itself n times
b1/n, or n√b a number y such that yn = b (where y ≥ 0 if possible), if one exists
bm/n (b1/n)m
logb x logarithm: logb x is the value y such that by = x, if one exists
n mod k modulo: n mod k := the remainder when dividing n by k
k | n k (evenly) divides n
∑ summation: ∑n

i=1 xi := x1 + x2 + · · · + xn
∏ product: ∏n

i=1 xi := x1 · x2 · · · · · xn

Figure 2.1: Sum-
mary of the basic
mathematical nota-
tion introduced in
Section 2.2.

Example 2.1 (Integers, reals, and rationals)
The following are all examples of integers: 1, 42, 0, and −17.

All of the following are real numbers: 1, 99.44, the ratio of the circumference
of a circle to its diameter π ≈ 3.141592653 · · · , and the so-called golden ratio
φ = (1 +

√
5)/2 ≈ 1.61803 · · · .

Examples of rational numbers include 3
2 , 9

5 , 16
4 , and 4

1 . (In Chapter 8, we’ll talk
about the familiar notion of the equivalence of two rational numbers like 1

2 and 2
4 ,

or like 16
4 and 4

1 , based on common divisors. See Example 8.36.) Of the example real
numbers above, both 1 and 99.44 are rational numbers; we can write them as 1

1 and
4972
50 , for example. Both π and φ are irrational.

Here are a few useful points relating these three types of numbers:

• All integers are rational numbers (with denominator equal to 1).
• All rational numbers are real numbers.
• But not all rational numbers are integers and not all real numbers are rational: for

example, 3
2 is not an integer, and

√
2 is not rational. (We’ll prove that

√
2 is not

rational in Example 4.21.)

Taking it further: Definition 2.2 specifies Z, Q, and R somewhat informally. To be completely rigor-
ous, one can define the nonnegative integers as the smallest collection of numbers such that: (i) 0 is an
integer; and (ii) if x is an integer, then x + 1 is also an integer. See Section 5.4.1. (Of course, for even this
definition to make sense, we’d need to give a rigorous definition of the number zero and a rigorous def-
inition of the operation of adding one.) With a proper definition of the integers, it’s fairly easy to define
the rationals as ratios of integers. But formally defining the real numbers is surprisingly challenging; it
was a major enterprise of mathematics in the late 1800s, and is often the focus of a first course in analysis
in an undergraduate mathematics curriculum.

Virtually every programming language supports both integers (usually known as ints) and real
numbers (usually known as floats); see p. 217 for some discussion of the way that these basic numerical
types are implemented in real computers. (Rational numbers are much less frequently implemented as
basic data types in programming languages, though there are some exceptions, like Scheme.)

2.2. BOOLEANS, NUMBERS, AND ARITHMETIC 205

In addition to the basic symbols that we’ve introduced to represent the integers, the
rationals, and the reals (Z, Q, and R), we will also introduce special notation for some
specific subsets of these numbers. We will write Z≥0 and Z≤0 to denote the nonnega-
tive integers (0, 1, 2, . . .) and nonpositive integers (0,−1,−2, . . .), respectively. Generally,
when we write Z with a superscripted condition, we mean all those integers for which
the stated condition is true. For example, Z 6= 1 denotes all integers aside from 1. Sim-
ilarly, we write R>0 to denote the positive real numbers (every real number x > 0).
Other conditions in the superscript of R are analogous.

0 1 2 3 4 5
(a) The interval (1, 4)

0 1 2 3 4 5
(b) The interval [1, 4]

0 1 2 3 4 5
(c) The interval [1, 4)

0 1 2 3 4 5
(d) The interval (1, 4]

Figure 2.2: Number
lines representing
real numbers
between 1 and 4,
with 1 included in
the range in (b, c),
and 4 included in
the range in (b, d).

We’ll also use standard notation for intervals of real numbers, denoting all real
numbers between two specified values. There are two variants of this notation, which
allow “between two specified values” to either include or exclude those specified val-
ues. We use round parentheses to mean “exclude the endpoint” and square brackets
to mean “include the endpoint” when we denote a range:

• (a, b) denotes those real numbers x for which a < x < b.
• [a, b] denotes those real numbers x for which a ≤ x ≤ b.
• (a, b] denotes those real numbers x for which a < x ≤ b.
• [a, b) denotes those real numbers x for which a ≤ x < b.

Sometimes (a, b) and [a, b] are, respectively, called the open interval and closed inter-
val between a and b. These four types of intervals are also sometimes denoted via
a number line, with open and closed circles denoting open and closed intervals; see
Figure 2.2 for an example. For two real numbers x and y, we will use the standard
notation “x ≈ y” to denote that x is approximately equal to y. This notation is defined
informally, because what counts as “close enough” to be approximately equal will
depend heavily on context.

2.2.3 Absolute Value, Floor, and Ceiling

In the remaining subsections of Section 2.2, we will give definitions of some standard
arithmetic operations that involve the numbers we just defined. We’ll start in this
subsection with three operations on a real number: absolute value, floor, and ceiling.

The absolute value of a real number x, written |x|, denotes how far x is from 0, disre-
garding the sign of x (that is, disregarding whether x is positive or negative):

Definition 2.3 (Absolute Value)
The absolute value of a real number x is |x| :=

x if x ≥ 0
−x otherwise.

For example, |42.42| = 42.42 and | − 128| = 128. (Definition 2.3 uses standard notation
for defining “by cases”: the value of |x| is x when x ≥ 0, and the value of |x| is −x
otherwise—that is, when x < 0.)

For a real number x, we can consider x “rounded down” or “rounded up,” which
are called the floor and ceiling of x, respectively:

206 CHAPTER 2. BASIC DATA TYPES

Definition 2.4 (Floor and ceiling)
The floor of a real number x, written ⌊x⌋, denotes the largest integer that is less than or equal
to x. The ceiling of a real number x, written ⌈x⌉, denotes the smallest integer that is greater
than or equal to x.

Note that Definition 2.4 defines the floor and ceiling of negative numbers, too; the
definition doesn’t care whether x is greater than or less than 0.

Here are a few examples of floor and ceiling:

Example 2.2 (Floor and ceiling)
We have ⌊

√
2⌋ = ⌊1.4142 · · ·⌋ = 1, ⌊2π⌋ = ⌊6.28318 · · ·⌋ = 6, and ⌊3⌋ = 3. For ceilings,

we have ⌈
√

2⌉ = 2, ⌈2π⌉ = 7, and ⌈3⌉ = 3.
For negative numbers, ⌊−

√
2⌋ = ⌊−1.4142 · · ·⌋ = −2, and ⌈−

√
2⌉ = −1.

−2 −1 0 1 2 3

Figure 2.3: The floor
and ceiling of −

√
2,√

2, and 3.

The number line may give an intuitive way to think about floor and ceiling: ⌊x⌋ de-
notes the first integer that we encounter moving left in the number line starting at
x; ⌈x⌉ denotes the first integer that we encounter moving right from x. (And x itself
counts for both definitions.) See Figure 2.3.

2.2.4 Exponentiation

We next consider raising a number to an exponent or power.

Definition 2.5 (Raising a number to an integer power)
For a real number b and a nonnegative integer n, the number bn denotes the result of
multiplying b by itself n times:

b0 := 1 and, for n ≥ 1, bn := b · b · · · b| {z }
n times

.

The number b is called the base and the integer n is called the exponent.

For example, 20 = 1, 22 = 2 · 2 = 4, 25 = 2 · 2 · 2 · 2 · 2 = 32, and 52 = 5 · 5 = 25.
Note again that b0 = 1 for any base b, including b = 0. (The case of 00 is tricky: one is

tempted to say both “0 to the anything is 0” and “anything to the 0 is 1.” But, of course,
these two statements are inconsistent. For us, the latter trumps the former, and 00 = 1,
as in Definition 2.5.)

Raising a base to nonintegral exponents
Consider the expression bx for an exponent x > 0 that is not an integer. (It’s all too

easy to have done this calculation by typing numbers into a calculator without actually
thinking about what the expression actually means!) Here’s the definition of bm/n

when the exponent m
n is a rational number:

